Ингенциальная математика. Монография - Ибратжон Хатамович Алиев, Марат Альбертович Бурнашев

Ингенциальная математика. Монография

В этой уникальной монографии представлена новая исследовательская отрасль - ингенциальная математика. В ней детально рассмотрены свойства ингенциальных чисел и объяснен порядок проведения различных операций с их помощью. Автор также указывает на важные направления исследований в этой новой математической области.

Данное произведение является обязательным для всех, кто интересуется математикой, теорией чисел и желает расширить свои знания в этой области. Книга предназначена как для преподавателей вузов и магистров, так и для студентов, а также для всех, чьи интересы связаны с будущим современной науки.

В своей работе автор не только стремится представить новый математический подход, но и привносит свои собственные идеи и дополнительную информацию. Он приводит примеры конкретных задач и иллюстрации, чтобы помочь читателю лучше понять и применить ингенциальную математику в практической сфере. Эта книга станет неотъемлемым источником знаний и стимулом для новых открытий в области ингенциальной математики.

Читать бесплатно онлайн Ингенциальная математика. Монография - Ибратжон Хатамович Алиев, Марат Альбертович Бурнашев

Редактор Боходир Хошимович Каримов

Редактор Фаррух Муроджонович Шарофутдинов

Дизайнер обложки Ибратжон Хатамович Алиев

Иллюстратор Ибратжон Хатамович Алиев

Корректор Абдурасул Абдусолиевич Эргашев

Рецензент, доктор технических наук, доцент научно-исследовательского института полупроводников и микроэлектроники при Национальном Университете Узбекистана Оббосхон Хакимович Кулдашев

Рецензент, доктор физико-математических наук, профессор физико-технического факультета Ферганского Государственного Университета Салим Мадрахимович Отажонов

Рецензент, кандидат физико-математических наук, доцент физико-технического факультета Ферганского Государственного Университета Боходир Хошимович Каримов

Научный руководитель, Академик Научной школы "Электрон" Боходир Хошимович Каримов

Научный консультант, магистр факультета математики-информатики Ферганского Государственного Университета Олимхон Улугбекович Ахмедов

Экономический руководитель, главный учёный секретарь Научной школы "Электрон" Фаррух Муроджонович Шарофутдинов

Экономический консультант, Экономический Профессор Научной школы "Электрон", представитель Малазийской компании "Clipper Energy" Ботирали Рустамович Жалолов


© Ибратжон Хатамович Алиев, 2022

© Марат Альбертович Бурнашев, 2022

© Ибратжон Хатамович Алиев, дизайн обложки, 2022

© Ибратжон Хатамович Алиев, иллюстрации, 2022


ISBN 978-5-0056-4534-0

Создано в интеллектуальной издательской системе Ridero

Предисловие

Нет сомнений: вселенная бесконечна.

Эпикур

Развитие физических наук вместе со всеми её аспектами, приводит к необходимости развития его математического аппарата, также и приводя к необходимости разрешения уже математических проблем и нахождения процесса их решения. И одной из таких проблем является решение уравнений, связанных с делением на ноль, но как оказалось, эта проблема становиться более обширной и приводит к образованию даже настоящего нового вида чисел. В данной работе рассмотрен вопрос самого определения двух разновидностей новых чисел, получивших своё название из латинского языка как ингенциальные и пер-ингенциальные числа, которые могут при вводе их в математический аппарат привести к большим успехам и указать новые горизонты в различных исследованиях, что и доказывает их актуальность. Вместе с этим важно отметить возможность их применения в самых различных областях науки и техники приводя к новым результатам.

На сегодняшний день опубликовано несколько научных статей на данную тему и проведены расчёты, но подробных исследований в этой области не было замечено и не было проведено, благодаря чему это исследование является единственной в своём роде работой за всю историю математики, где рассматривался бы этот её новый раздел.

Говоря о базе образования этих чисел, можно сказать, что она была выработана из комплексных чисел. И если обращаться к истории комплексной математики, то необходимо вспомнить труды знаменитого Кардано «Великое искусство, или об алгебраических правилах» 1545 года, где он при решении квадратного уравнения получил отрицательное число под корнем. Также уже после работ Бомбелли 1572 года уже стало известны о возможности использования комплексных чисел при решении кубических уравнений различных разновидностей.

Но комплексные числа в основном помогли определить сам алгоритм процесса математического описания данных чисел, ибо сами по себе некогда являлись невообразимыми и лишь после представления их в решении уравнения Шрёдингера для описания действительных элементарных частиц, стали частью науки как действительно существующие в природе.

Вам может понравиться: