Гидравлика - Коллектив авторов

Гидравлика

Страниц

35

Год

2008

Книга рассматривает методы применения законов гидравлики. В первой части книги описывается аналитический метод, который использует уравнения механики для установления зависимости между кинематическими и динамическими характеристиками жидкости. Применение модельных жидкостей, таких как сплошная жидкость, упрощает решение задач и позволяет получить уравнения движения и равновесия. Однако этот метод не всегда приводит к необходимым решениям.

Во второй части книги описывается экспериментальный метод, который использует модели и теорию подобий для получения данных, которые затем применяются на практике для уточнения аналитических результатов. Рекомендуется сочетать оба метода для наилучших результатов.

Также в книге отмечается, что современная гидравлика часто называется вычислительной гидравликой, так как она трудно представима без использования современных средств проектирования и вычислительной техники.

В заключительной части книги рассматриваются свойства жидкостей, особенно их свойство текучести, которое общее как для жидкостей, так и для газов.

Читать бесплатно онлайн Гидравлика - Коллектив авторов

1. Методы применения законов гидравлики

1. Аналитический. Цель применения этого метода – устанавливать зависимость между кинематическими и динамическими характеристиками жидкости. С этой целью пользуются уравнениями механики; в итоге получают уравнения движения и равновесия жидкости.

Для упрощенного применения уравнений механики пользуются модельными жидкостями: например, сплошная жидкость.

По определению, ни один параметр этого континуума (сплошной жидкости) не может быть прерывным, в том числе его производное, причем в каждой точке, если нет особых условий.

Такая гипотеза позволяет установить картину механического движения и равновесия жидкости в каждой точке континуума пространства. Еще одним приемом, применяемом для облегчения решения теоретических задач, является решение задачи для одномерного случая со следующим обобщением для трехмерного. Дело в том, что для таких случаев не так трудно установить среднее значение исследуемого параметра. После этого можно получить другие уравнения гидравлики, наиболее часто применяемые.

Однако этот метод, как и теоретическая гидромеханика, суть которой составляет строго математический подход, не всегда приводит к необходимому теоретическому механизму решения проблемы, хотя и неплохо раскрывает ее общую природу проблемы.

2. Экспериментальный. Основным приемом, по этому методу, является использование моделей, согласно теории подобий: при этом полученные данные применяются в практических условиях и становится возможным уточнение аналитических результатов.

Наилучшим вариантом является сочетание двух вышеназванных методов.

Современную гидравлику трудно себе представить без применения современных средств проектирования: это высокоскоростные локальные сети, автоматизированное рабочее место конструктора и прочее.

Поэтому современную гидравлику нередко называют вычислительной гидравликой.

Свойства жидкости

Поскольку газ – следующее агрегатное состояние вещества, то у этих форм вещества существует свойство, общее для обоих агрегатных состояний. Это свойство текучести.

Исходя из свойств текучести, рассмотрев жидкое и газообразное агрегатное состояние вещества, увидим, что жидкость – то состояние вещества, в котором его уже невозможно сжимать (или можно сжать бесконечно мало). Газ – такое состояние того же вещества, в котором его можно сжать, то есть газ можно назвать сжимаемой жидкостью, точно так же, как и жидкость – несжимаемым газом.

Другими словами, особых принципиальных различий, кроме сжимаемости, между газом и жидкостью не наблюдается.

Несжимаемую жидкость, равновесие и движение которой изучает гидравлика, называют также капельной жидкостью.

2. Основные свойства жидкости

Плотность жидкости.

Если рассмотреть произвольный объем жидкости W, то он имеет массу M.

Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна


где M – масса жидкости.

Если требуется узнать r в каждой точке А объема W, то


где D – элементарность рассматриваемых характеристик в точке А.

Сжимаемость.

Характеризуется коэффициентом объемного сжатия.


Из формулы видно, что речь идет о способности жидкостей уменьшать объем при единичном изменении давления: из-за уменьшения присутствует знак минус.

Температурное расширение.

Вам может понравиться: