Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей

Страниц

120

Год

Обычные школьники – участники искателей научных открытий. Растет ли новое поколение ученых в обычных школах? Какие изменения необходимы в современном образовании? Возможно ли научное прорыв для школьников? Эти вопросы находятся в центре внимания. Еще недавно, мир отчаянно пытался найти решение Теоремы Ферма в течение нескольких столетий. Теорема, изначально данная весьма запутанным образом, стала самой сложной головоломкой в истории математики. Несмотря на 140-страничное доказательство, доступное только опытным ученым в области теории чисел, она все равно остается сложной и практически непересказуемой для школьников. Которые, однако, не сдавались и вели смелую битву против этой теоремы высшей математики. Вступив в пари с их преподавателем о доказательстве Великой Теоремы, группа ребят из обычной физматшколы неожиданно столкнулась с множеством препятствий, которые заставили их лично погрузиться в мир науки исследований.

Читать бесплатно онлайн Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев

© Марат Авдыев, 2021


ISBN 978-5-0053-7630-5

Создано в интеллектуальной издательской системе Ridero

Часть первая для школьников 12+

Занятия в школе

Предисловие

Посвящается нашим детям и внукам

Могут ли обычные школьники сделать научное открытие? Какой должна быть современная школа? Кого, чему и как учить? – ответы на эти вопросы имеют важное значение.

Сократите в микрорайоне или посёлке школу – и сразу получите рост преступности, причём не только подростковой. Выходит, что без воспитания подрастающего поколения нет будущего. Сейчас в мире происходит борьба за умы и души молодых людей через Интернет и мобильные устройства. Забыть собственную историю и достижения, засорить мозги людей мусором, «подсадить на иглу» развлекательных информационных потоков, оболванить, заставить купить ненужное, но престижное, сузить выбор до мнений непоколебимых экспертов и «авторитетов», набравших миллионы «лайков» – вот задача наших «Западных друзей».

Наше общество становится очень жёстким и консервативным в выражении свободы собственного мнения: всё заранее уже решено, выбор уже сделан на уровне подсознания. В качестве компенсации предоставляется лишь свобода в изощрённых пороках: переплюнь всех, опереди и шокируй даже ценой риска для жизни.

Вызов, который сделан в этой книге, показывает на одном конкретном примере, как этому можно и нужно противостоять. Автор поставил задачу развеять господствующие мифы о научном превосходстве стран большого Запада, о научной этике, о беспристрастности и просветительской миссии по всей Земле. Проще говоря, есть «правильные народы», обучающие отсталые, «неправильные народы» – и таков порядок вещей. На деле оказывается совсем не так.

Просто формулируемая Великая теорема Ферма и её наглядное доказательство, понятное всем, кто имеет лишь школьную подготовку, стала своего рода тестом на несостоятельность этих мифов. История для адептов Большого Запада вышла совсем не красивая и даже комичная.

Но пройдёт ещё не мало времени, прежде, чем простое доказательство Великой теоремы Ферма, будет признано миллиардами обычных людей – слишком силён поток дезинформации из разряда оболванивания потребителя.

Но даже, если эта книга заставит думать самостоятельно всего несколько человек и будет стимулировать их во всём следовать собственному выбору, уважать свой народ и свою историю, то автор будет считать свою задачу исполненной.

России. Новосибирск. Сургут. 2020 – 2021 г.

История Великой теоремы

Великая Теорема Ферма была сформулирована Пьером де Ферма в 1637 г., она гласит, что уравнение:

a>n + b>n = c>n не имеет решений в целых, кроме нулевых значений, при n> 2

Когда n = 2, мы имеем дело с привычной теоремой Пифагора, при этом существует бесконечное число решений уравнения в целых числах – Пифагоровы тройки. Примеры Пифагоровых троек известны:

(3, 4, 5); (5, 12, 13); (15, 8, 17) и др.

Со времён Евклида был найден целый ряд способов генерации Пифагоровых троек. Из школьного куса математики легко понять, что Пифагоровы тройки имеют наглядную интерпретацию в терминах геометрии рациональных точек на единичной окружности. Эйлер в 1770 году доказал теорему (1) для случая n=3, Дирихле и Лежандр в 1825 – для n=5, Ламе – для n=7. Куммер показал, что теорема верна для всех простых n, меньших 100.