Осесимметричная задача теории упругости: проблемы в теории - Константин Ефанов

Осесимметричная задача теории упругости: проблемы в теории

Страниц

5

Год

2022

помощью пространственной задачи и теории оболочек возможно получить более точные и реалистичные результаты расчетов оболочек. Теория упругости, в свою очередь, не подвергается проверке на корректность, и осесимметричная задача, используемая в ее рамках, содержит ошибки и некорректности.

Книга рассматривает разделы теории упругости, включая пространственную задачу и осесимметричную задачу, и объясняет их теоретическое основание. Пространственная задача позволяет решать задачи для оболочек различной кривизны, имеет обоснованный расчетный подход и физически обоснованную модель. Осесимметричная задача, напротив, содержит ошибочную модель и математический аппарат, построенный с допущением ошибок и некорректностей.

Автор ссылается на работы Габриэля Ламе и отмечает, что применение теории наибольшего напряжения для рассмотрения плоского напряженного состояния было характерно для цилиндров. Разработка теории оболочек была продиктована введением допущений в теории упругости. Теория оболочек имеет физически обоснованную расчетную модель и отличается от осесимметричной теории упругости. Она подразделяется на теорию тонких оболочек с точностью 0,1 и теорию толстых оболочек типа Власова с повышенной точностью.

В заключении автор делает выводы о применимости различных методов расчета оболочек. Расчет оболочек по пространственной задаче с использованием метода конечных элементов с трехмерными конечными элементами является наиболее обоснованным и реалистичным. Теория оболочек, второй по точности подход, имеет меньшее физическое обоснование, но более технический подход. Однако, расчеты на основе осесимметричной задачи проводить некорректно, и следует пересмотреть все нормативные методики.

Автор предполагает, что с постепенным внедрением компьютерного расчета методом конечных элементов, ручные и автоматизированные расчеты на основе осесимметричной теории будут заменены. Он указывает, что критика осесимметричной теории упругости, несмотря на то, что она причинит болезненность научному сообществу, необходима и может привести к улучшению практических методов расчета оболочек.

Читать бесплатно онлайн Осесимметричная задача теории упругости: проблемы в теории - Константин Ефанов

Положение осесимметричной задачи теории упругости к пространственной задаче и теории оболочек.

Теория упругости не подвергается проверке на корректность.

В теории упругости в настоящее время находятся разделы:

– пространственной задачи,

– осесимметричной задачи.

Теория упругости является разделом механики сплошной среды.

Пространственная задача позволяет находить решение для оболочек вращения и оболочек различной кривизны. Пространственная задача в своем теоретическом основании имеет обоснованный расчетный подход.

Осесимметричная задача разработана для решения задач расчета оболочек. Осесимметричная модель содержит в теоретическом основании ошибочную расчетную модель и содержит математический аппарат, построенный с допущением ошибок и некорректностей.

Тимошенко отмечает [1,с.142], что Габриэль Ламе для цилиндра рассматривал плоское напряженное состояния и применял теорию наибольшего напряжения.

Из теории упругости введением допущений получена теория оболочек. Теория оболочек имеет обоснованную физически расчетную модель в отличии от осесимметричной теории упругости.

Теория оболочек делится на теорию тонких оболочек с точностью 0,1 и теорию толстых оболочек типа Власова с повышенной точностью, позволяющей выполнять расчет толстых оболочек сосудов.

__

Можно сделать вывод:

1 расчет оболочек по пространственной теории упругости методом конечных элементов (с трехмерными конечными элементами) дает наиболее обоснованный и реалистичный физически и теоретически результат.

2 после применения пространственной задачи вторым по точности подходом является теория оболочек. Теория оболочек имеет меньшее физическое обоснование по сравнению с пространственной задачей, поэтому метод менее теоретический но более технический.

3. Расчеты на основе осесимметричной задачи проводить некорректно. Следует пересмотреть все нормативные методики.

4. С постепенным внедрением компьютерного расчета методом конечных элементов будут заменены ручные и автоматизированные расчеты, основанные на осесимметричной теории.

__

Научное сообщество болезненно воспримет критику осесимметричной теории упругости.

Но тем не менее, с аргументацией критики ознакомиться следует. И для развития науки и для развития методики расчетов оболочек сосудов.

Об исключении (пересмотре) из теории упругости осесимметричной задачи

В теории упругости необходимо использовать только подход решения пространственной задачи для расчета оболочек. Или использовать теорию оболочек.

Осесимметричную задачу теории упругости в её существующем построении необходимо исключить из теории упругости или пересмотреть на предмет устранения ошибок в расчетной модели и математическом аппарате.

Оболочки могут быть рассчитаны точными методами пространственной задачи теории упругости с получением физически обоснованных результатов.

Вам может понравиться: